

WATER IS LIFE - SANITATION IS DIGNITY

RU number	Main river	PES EC	Key Drivers	RU Priority	EWR site
W1 Se condary Catchment (Main River: Mhlathuze)					
W11-2	Matigulu	с	Flow, WQ, Non- flow	2	EWB MA1
W12-3	Mhlatuze	с	Flow, WQ, Non- flow.	4	Linked to historical EWR 3
W12-6	Mhlatuze	С	Flow, WQ, Non- flow.	4	Historical EWR3
W12-8	Nseleni	С	Flow, WQ, Non- flow.	4	EWR NS1
W12-9	Nseleni	С	Flow, WQ, Non- flow.	4	Linked to lakes and estuary
		W2 Se	condary Catchment	(Main River: U	Jmfolozi)
W21-5	White Mfolozi	B/C	Flow, Non-flow.	4	EWR WM1
W22-1	Black Mfolozi	B/C	Flow	3	EWR BM1
W22-5	Black Mfolozi	в	Flow Non-flow	3	Linked to EWR BM1
W23-1	Mfolozi	В		3	Linked to EWR BM2 and WM1
WATER IS LIFE - SANITATION IS DIGNITY 3					

н	GH PR	IORI	TIES RUS	AND	EWR SITES
RU num ber	Main river	PESEC	Key Drivers	RU Priority	EWR site
	W3 Secondary Catchment (Main River: Mkuze)				
W31-1	Mkuze	С	Flow, WQ, Non-flow	3	Linked to EWR MK1
W31-2	Mkuze	В		3	Linked to EWR MK1
W31-3	Mkuze	B/C	Flow, WQ, Non-flow	4	Linked to EWR MK1
W31-4	Mkuze	В		4	Linked to EWR MK1
W31-5	Mkuze	С	Flow, WQ, Non-flow	3	EWR MK1
W32_1	Mkuze	B/C	Flow, Non-flow	4	Linked to EWR MK1
W32-6	Munywana	В		4	Linked to St Lucia
	W4 9	Secondary (Catchment (Main Rive	r: Pongola - e	excluding Eswatini)
W42-2	Phongolo	С	Flow (WQ Non-flow)	2	EWR UP1
W45-1	Phongolo	С	Flow, Non-flow (wq)	4	Linked to EWR UP1
	W5	Secondary	Catchment (Main Rive	er: Usutu - ex	cluding Eswatini)
W51-2	Assegaai	С	Flow, Non-flow	4	Linked to EWR AS1
W51-3	Assegaai	B/C	Flow, Non-flow (WQ)	4	EWR AS1
W53-2	Mpama	B/C	Flow, Non-flow	4	IUCMA
W54-1	uSuthu	в		4	IUCMA
W57-1	uSuthu	B/C	Flow	4	Linked to pans and floodplains (Ndum

UA	RU W21-5 IUA W21			and a dealer of the		
PES	B/C	and and the end	-	and the second second		
EIS	Moderate	in the state of the second		and the second second		
REC	B/C			and a set		
TEC	B/C	And the second sec				
ECOLOGICAL WATER REQUIREMENTS (EWR) Natural MAR: 222.51 MCM Present Day MAR: 191.8 MCM						
	w flow FWR					
	w flow EWR MCM	% of nMAR	MCM	% of nMAR		
		% of nMAR 24.6	MCM 89.31	% of nMAR 40.1		
	MCM		-			
	MCM		-			

GEOMORPHOLOGY RQO					
METF	RICS	ECOSPECS	TPC		
Extent of sand flow ing habita		Sand patches less than 25%	Sand deposits exceeding 20% persist over several seasons		
Extent of sand habitat	d in pool	Mid-channel sand bars should not be present	Sand bars present in pool habitat		
Width of activ transect	e channel at	Width between upper flood bench stable at 64m on transect line	Visible erosion or sediment accretion along either bank – w idth exceeds 65m or less than 63m		
Low er flood b Present-abset		Should not be present on both banks	Actively eroding, absence of marginal vegetation		
Low er flood b Sediment dep		Evidence of fine sediment deposits (silt to medium sand) but not excessive	No recent fine sediment deposits or excessive deposits		
WATER IS LIFE	- SANITATION IS D	IGNITY	8		

RIPARIAN VEGETATION ROO

Flood features / Upper zone

Maintain perennial alien plant species An increase in perennial alien plant species cover above 15%. Maintain indigenous terrestrial woody species cover below 10%. An increase in terrestrial woody species cover above 10%.

TPC

Reduced proportion of aerial non-woody cover below 30% in the zone.

The absence of Nuxia oppositifolia or

Salix mucronate or Miscanthus junceus.

An absence of indigenous riparian w oody species or an increase in w oody

An increase in reed cover above 10%.

species cover above 40%. A decrease in non-w oody vegetation cover below 40%.

ECOSPECS

The dominant vegetation type should remain non-w oody but with scattered

The presence of Nuxia oppositifolia,

Salix mucronata and Miscanthus

w oody individuals

junceus.

11

METRICS	ECOSPECS	TPC
Upper flood bench: Present-absent	Not be present on both banks.	Upper flood bench activel eroding.
Upper flood bench: Sediment deposits	Evidence of fine sediment deposits but not excessive.	No recent sediment deposits linked to the last w et season; Evidence of excessive deposition and terrestrialisation indicating elevated flood bench.
Channel type	Channel should not change from a single thread channel with pool- rapid morphology.	Change to a different channel type.

1	

RIPARIAN VEGETATION ROO				
ECOSPECS	TPC			
Marginal / Lower zones				
The dominant vegetation type should remain non-woody (mostly sedges and grasses), with open (unvegetated) cobble / boulder.	An absence of non-woody riparian vegetation or an increase in non-woody vegetation cover (% aerial) above 50%.			
The presence of <i>Cyperus longus</i> and <i>Juncus effusus</i> .	The absence of <i>Cyperus longus</i> or Juncus effusus.			
Maintain perennial alien plant species cover below 5%.	An increase in perennial alien plant species cover above 10%.			
Maintain an absence of terrestrial w oody species.	An occurrence of terrestrial woody species.			
Maintain indigenous riparian woody species cover below 20%.	An absence of indigenous woody species or an increase in woody species cover above 25%.			
Maintain non-woody cover above 20%.	A decrease in non-woody vegetation cover below 10%.			
Maintain the absence of reeds.	An increase in reed cover above 10%.			

Maintain indigenous riparian woody species cover above 5%.				
Maintain	non-woody cover above 50%.			
Maintain	reed cover below 10% .			

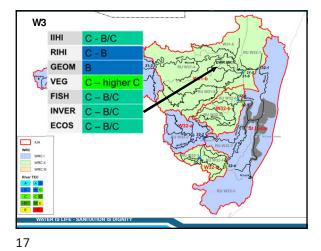
8

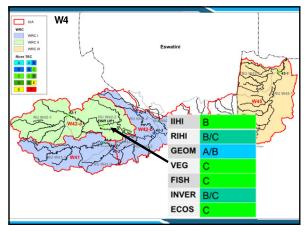
RIPARIAN VEGETATION ROO				
ECOSPECS TPC				
Macro Channel Bank				
The dominant vegetation type should remain non-woody but with open vegetation areas	Reduced proportion of aerial woody cover below 30%.			
The presence of Ficus sur.	The absence of Ficus sur.			
Maintain perennial alien plant species cover below 10%.	An increase in perennial alien plant species cover above 15%.			
Maintain indigenous terrestrial woody species cover below 60%.	An increase in terrestrial woody species cover above 60%.			
Maintain cover of indigenous riparian woody species above 10%.	A decrease in woody species cover below 5%.			
Riparia	an zone			
Maintain PES score of at least 78%	A decrease in PES score below 77			
Maintain the presence of at least 26 indigenous plant species.	A decrease in the number of indigenous plant species below 20.			
WATER IS LIFE - SANITATION IS DIGNITY 12				

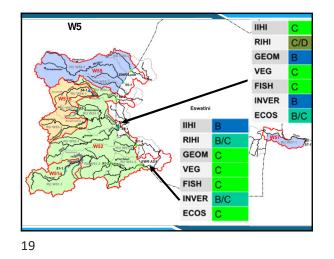
FISH RQO (summary)				
ECOSPECS	TPC (Biotic)			
Present ecological status C (73.1%).	Decrease of PES into a low er EC than PES (<c).< td=""></c).<>			
EWR site: Four indigenous fish species confirmed (sampled) previously at EWR site (2014 and 2022).	EWR site: Less than three (3) indigenous fish species sampled at EWR site during any survey. Absence of range of life stages (juveniles to adults) of all species sampled at site during various surveys may also indicate deterioration.			
EWR site: AURA sampled at EWR site 100% of surveys (2014/07 and 2022/07).	EWR site: AURA absent from EWR site during any survey OR absence of range of life stages (juveniles to adults) during various surveys.			
Reach: BVIV most applicable indicator in reach, estimated to be scarce in reach (present <10% of sites in reach: FROC=1)	Reach: BVIV absent from all sites sampled in reach (FROC=0			
Reach: BUNI most applicable indicator in reach, estimated to be scarce in reach (present <10% of sites in reach: FROC=1).	Reach: BUNI absent from all sites sampled in reach (FROC=0			

FISH RQO (summary)				
ECOSPECS	TPC (Biotic)			
Reach: BPAU most applicable indicator in reach, estimated to be scarce in reach (present <10% of sites in reach: FROC=1).	Reach: BPAU absent from all sites sampled in reach (FROC=0)			
Reach: MMAC most applicable indicator in reach, estimated to be scarce in reach (present <10% of sites in reach: FROC=1).	Reach: MMAC absent from all sites sampled in reach (FROC=0).			
No alien species previously sampled at EWR site or know n from reach.	Presence of any alien/introduced species in reach or at EWR site during any survey.			
Three catadromous eel species and various potamodromous species expected in reach	EWR site: Absence of LNAT, LMOL and CGAR from site during any survey.			
WATER IS LIFE - SANITATION IS DIGNITY	14			

MACRO-INVERTEBRATE RQO (summary)				
ECOSPECS	TPC (Biotic)			
SASS5 score range 140 to 180; ASPT value: >6.0.	ASPT below 5.8 - grading from a biological band B tow ards a B/C			
Ensure that the MIRAI score is within the range of a B/C category (>77.4 and <82.01) using the same reference data used in this study.	A MIRAI score of 80% or less.			
To maintain suitable conditions for the flow -dependent Hydropsychidae (>2 species) in the SIC biotope.	Hydropsychidae less than three species in any two consecutive surveys.			
To maintain suitable flow velocity (0.3 - 0.6 m/s) and clean, unembedded surface area (cobbles) to support the following flow - dependent taxa in the FFCS biotope: • Paleomonidae • Tricorythidae				
WATER IS LIFE - SANITATION IS DIGNITY	15			


14





MACRO-INVERTEBRATE RQO		
ECOSPECS	TPC (Biotic)	
Maintain suitable conditions for the following flow -dependent species in the SIC biotope:	Any one of Emidae and Leptophlebiidae missing in two consecutive surveys.	
To maintain sufficient quantity and quality of inundated vegetation to support the Coenagrionidae and Atyidae.	Any one of Coenagrionidae and Atyidae missing in two consecutive surveys.	
To ensure that no group consistently dominates the fauna, defined as E abundance (>1000) over more than two consecutive surveys.	Any taxon occurring in an abundance of	
WATER IS LIFE - SANITATION IS DIGNITY	16	

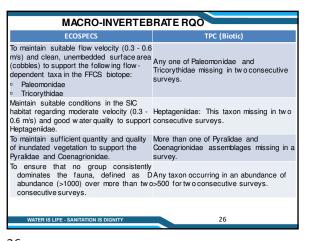
RU	G1 (NGWEMP RU W53-3	ISI RIVER)
IUA	IUA W52	and the second s
PES	B/C	
EIS	Moderate	
REC (non flow-related)	B/C	the second s
TEC	B/C	
	HYDR	OLOGICAL RQO
	ECOLOGICAL V	NATER REQUIREMENTS (EWR)
Natural MAR	R: 156.33 MCM	Present Day MAR: 79.15 MCM

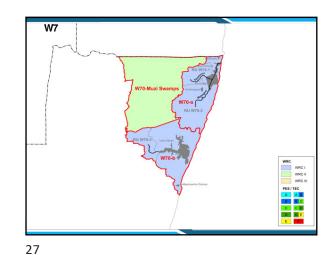
Natural WATE 150.55	IVIOIVI	Tresent Day WATL 7	3.13 1000
Low flow EWR		Total flow EWR	
MCM	% of nMAR	MCM	% of nMAR
30.46	19.5	50.82	32.5
WATER IS LIFE - SANITA	TION IS DIGNITY		

GEOMORPHOLOGY RQO		
METRICS	ECOSPECS	TPC
Bed armouring in fast flow ing habitat	Fine to medium gravels cover >10% of bed within run or glide habitat; 50% of cobbles are mobile	Fine to medium gravels cover <10% of bed within run habitat; <50% of cobbles are mobile, >50% imbricated.
Low er flood bench: Present-absent	Present on at least one bank	Actively eroding, absence of marginal vegetation
Low er flood bench: Sediment deposits	Evidence of fine sediment deposits (silt to medium sand)	No recent fine sediment deposits
Upper flood bench: Present-absent	Present on right bank.	Upper flood bench actively eroding.
Upper flood bench: Sediment deposits	Evidence of fine sediment deposits.	No recent sediment deposits linked to the last w et season. Terrestrialisation of riparian veg
Channel type	Channel pattern should not change from an anastomosing channel with islands and multiple channels	Loss of secondary channels; coalescence of islands

21

RIPARIAN VEGETATION RQO		
ECOSPECS	TPC	
Marginal / Lower zones		
The dominant vegetation type should remain mixture of non-woody and woody	A decrease of non-woody riparian vegetation cover (% aerial) below 40%.	
The presence of <i>Phragmites australis</i> and <i>Ciffortia strobilifera</i> .	The absence of <i>Phragmites australis</i> or <i>Cliffortia strobilifera</i> .	
Maintain perennial alien plant species cover below 10%.	An increase in perennial alien plant species cover above 10%.	
Maintain an absence of terrestrial w oody species.	An occurrence of terrestrial woody species.	
Maintain indigenous riparian woody species cover below 20%.	An absence of indigenous woody species or an increase in woody species cover above 40%.	
Maintain non-woody cover above 40%.	A decrease in non-woody vegetation cover below 40%.	
Maintain the absence of reeds.	An increase in reed cover above 10%.	


Maintain the presence of at least 10 indigenous plant species.
WATER IS LIFE - SANITATION IS DIGNITY
MATER IS LIFE - SAMIATION IS DIGNIT


23

RIPARIAN VEGE	ATION BOO
FCOORDECC	TPC
ECOSPECS	hannel Bank
The dominant vegetation type should remain w oody. Maintain perennial alien plant species	Reduced proportion of indigenous aerial w oody cover below 30%. An increase in perennial alien plant
cover below 20%. Maintain indigenous terrestrial woody species cover below 30%.	An increase in terrestrial woody species cover above 30%.
Maintain cover of indigenous riparian woody species above 10%.	A decrease in w oody species cover below 10%.
Maintain the presence of non-woody cover.	An absence of non-w oody vegetation cover.
Ripa Maintain PES score of at least 65% Maintain the presence of at least 10 indigenous plant species. WATER IS LIFE - SANITATION IS DIGNITY	ian zone A decrease in PES score below 65% A decrease in the number of indigenous plant species below 10. 23

22

MACRO-INVERTEBRATE RQO (summary)		
ECOSPECS	TPC (Biotic)	
SASS5 score range 180 to 220; ASPT value: >6.5.	ASPT below 6 - grading from a biological band B tow ards a B/C	
Ensure that the MIRAI score is within the range of a B category (>82 and <87.4) using the same reference data used in this study.	A MIRAI score of 80% or less.	
Maintain suitable flow velocity (maximum > 0.6 m/s) and clean, unembedded surface area (cobbles) to support the Psephenidae, Perlidae and Hydropsychidae (>2 species) assemblages in the Very fast flow over coarse sediment biotope (VFCS).	More than one of Psephenidae, Perlidae or Hydropsychidae (>2 species) assemblages missing in a survey.	
WATER IS LIFE - SANITATION IS DIGNITY	25	

